Transformation of organic compounds in the presence of metal complexes

V *. Cyclization of aminoalcohols on a ruthenium complex

K. Felföldi, M.S. Klyavlin and M. Bartók **

Department of Organic Chemistry, József Attila University, Szeged (Hungary) (Received July 22nd, 1988)

Abstract

In the presence of $RuCl_2(PPh_3)_3$ as catalyst at 150–180°C, N-substituted aminoalcohols are cyclized to N-substituted azacycloalkanes in good yields.

Introduction

In the presence of oxide catalysts under forcing reaction conditions, diols can be cyclized with primary amines to form azacycloalkanes [1,2]. Similarly, certain aminoalcohols undergo cyclization on alumina at $300 \,^{\circ}$ C [3,4]. Japanese authors recently investigated the reactions of 1,4- and 1,5-diols with primary amines in the presence of Ru complexes, from which they isolated N-substituted azacycloalkanes [5,6]. They explained the reaction in terms of a dehydrogenation-hydrogenation mechanism, and succeeded in isolating an aminoalcohol as an intermediate [5]. Here we report on a study of the reactions of some aminoalcohols under conditions similar to those used previously.

Results and discussion

The cyclizations of several aminoalcohols in the presence of $RuCl_2(PPH_3)_3$ as catalyst (Table 1) were carried out. The reactions of some diols and aniline were also studied (Table 2) and were then compared with published findings [5].

It was found that the expected cyclization did not occur in the case of the 1,3-aminoalcohols. Instead, a substance of higher molecular mass was formed (which has as yet not been identified) as in the reaction of 1,3-diols and amines.

^{*} Part IV; see ref. 16.

^{**} To whom correspondence should be addressed.

Entry	Aminoalcohol 1		Temp.	Product 2		Yield ^a
	R	n	(°C)	R	n	(%)
1	n-Bu	1	180	n-Bu	1	0
2	Ph	1	150	Ph	1	0
3	i-Pr	2	180	i-Pr	2	70
4	Ph	2	150	Ph	2	88
5	n-Bu	3	180	n-Bu	3	71
6	Ph	3	150	Ph	3	9 0
7	n-Bu	4	180	n-Bu	4	71

Conversion of aminoalcohols 1 to azacycloalkanes 2.

^a By GC.

Table 2

Reaction of diols with aniline

Entry	Diol	Temperature (°C)	Product 2		Yield (%)	
			R	n	our ^a	[5,6]
1	1,3-propandiol	180	Ph	1	0	_
2	1,4-butandiol	140	Ph	2	92	85
3	1,5-pentandiol	150	Ph	3	100	89
4	1,6-hexandiol	180	$\mathbf{P}\mathbf{h}$	4	57	-

^a By GC.

If substituent R in aminoalcohol 1 is an alkyl group, the cyclization requires a higher temperature. The process takes place by the route shown in Scheme 1, which is supported by the good dehydrogenation-hydrogenation ability of $RuCl_2(PPh_3)_3$ [7].

Experimental

A mixture of aminoalcohols (2.5 mmol) (2 ml), anhydrous dioxane (2 ml) and $RuCl_2(PPh_3)_3$ (10 mg) was heated for 5 h in a nitrogen atmosphere in a sealed glass

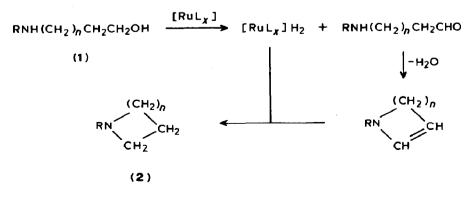


Table 1

tube. After cooling, the reaction mixture was subjected to gas and thin-layer chromatography. The reactions between the diols and aniline were carried out as described previously [5]. Gas chromatographic examinations were made with a Chrom 4 (Czechoslovakia) chromatograph, coupled with a Digint 34 u integrator (Chinoin, Budapest), on a 1.2 m 10% Reoplex/Chromosorb P column equipped with a flame ionization detector. Nitrogen was the carrier gas. The thin-layer chromatographic examinations carried out on a Kieselgel (Merck) plate with a layer thickness of 0.5 mm, in a solvent mixture of benzene/ethanol (80/20) or in certain cases benzene/pentane [8]/ethanol (60/20/20); development by use of the Draggendorf reagent.

The starting aminoalcohols and the expected N-substituted azacycloalkanes were synthesized by published procedures. [9–15]. The diols and amines were purchased from Fluka. The $RuCl_2(PPh_3)_3$ was obtained from Strem. The dioxane was dehydrated in the usual way and was distilled under nitrogen.

Acknowledgements

We acknowledge the support provided by the Hungarian Academy of Sciences (Grant 320/1986) for this research.

References

- 1 W. Reppe, Annalen, 596 (1955) 1.
- 2 J.H. Paden and H. Atkins, J. Am. Chem. Soc., 58 (1936) 2487.
- 3 M. Scriabine, Bull. Soc. Chim. France, (1947) 454.
- 4 Yu.K. Juriev and I.K. Korobitsyna, Vestnik Moskovsk. Univ., 8 (1953) 73.
- 5 Y. Tsuji, K.-T. Huh, Y. Ohsugi and Y. Watanabe, J. Org. Chem., 50 (1985) 1365.
- 6 Y. Tsuji, Y. Yokoyama, K.-T. Huh and Y. Watanabe, Bull. Chem. Soc. Japan, 60 (1987) 3456.
- 7 H. Imai, T. Nishiguchi, M. Kobayashi and K. Fukuzumi, Bull. Chem. Soc. Japan, 48 (1975) 1585, and ref. therein.
- 8 P. Valastyán et al., Hung, Pat. 185665 (1981); Chem. Abstr., 101 (1984) 9837q.
- 9 G.A.R. Kon and J.J. Roberts, J. Chem. Soc., (1950) 980.
- 10 A.T. Bottini and J.D. Roberts, J. Am. Chem. Soc., 80 (1958) 5203.
- 11 R.C. Elderfield and H.A. Hagemann, J. Org. Chem. 14 (1949) 605.
- 12 L.C. Craig and R.M. Hixon, J. Am. Chem. Soc., 52 (1930) 804.
- 13 R. Adams and J.E. Mahan, J. Am. Chem. Soc., 64 (1942) 2588.
- 14 G.S. Kolesnikov and N.N. Michailevskaya, Zhur. Obsch. Khim., 27 (1957) 458.
- 15 D.H. Causey, R.P. Mays, D.A. Shamblee and Y.S. Lo, Synth. Commun., 18 (1988) 205.
- 16 K. Felföldi, I. Kapocsi and M. Bartók, J. Organomet. Chem., in press (JOM 9399).